Skip to content

Interpreting and Visualizing Models

Interpreting topic models can be challenging. Luckily Turftopic comes loaded with a bunch of utilities you can use for interpreting your topic models.

from turftopic import KeyNMF

model = KeyNMF(10)
topic_data = model.prepare_topic_data(corpus)

Topic Tables

The easiest way you can investigate topics in your fitted model is to use the built-in pretty printing utilities, that you can call on every fitted model or TopicData object.

Interpret your models with topic tables

model.print_topics()
# or
topic_data.print_topics()

Topic ID Top 10 Words
0 armenians, armenian, armenia, turks, turkish, genocide, azerbaijan, soviet, turkey, azerbaijani
1 sale, price, shipping, offer, sell, prices, interested, 00, games, selling
2 christians, christian, bible, christianity, church, god, scripture, faith, jesus, sin
3 encryption, chip, clipper, nsa, security, secure, privacy, encrypted, crypto, cryptography
....

# Print highest ranking documents for topic 0
model.print_representative_documents(0, corpus, document_topic_matrix)

# since topic_data already stores the corpus and the doc-topic-matrix, you only need to give a topic ID
topic_data.print_representative_documents(0)

Document Score
Poor 'Poly'. I see you're preparing the groundwork for yet another retreat from your... 0.40
Then you must be living in an alternate universe. Where were they? An Appeal to Mankind During the... 0.40
It is 'Serdar', 'kocaoglan'. Just love it. Well, it could be your head wasn't screwed on just right... 0.39

document = "I think guns should definitely banned from all public institutions, such as schools."

model.print_topic_distribution(document)
# or 
topic_data.print_topic_distribution(document)

Topic name Score
7_gun_guns_firearms_weapons 0.05
17_mail_address_email_send 0.00
3_encryption_chip_clipper_nsa 0.00
19_baseball_pitching_pitcher_hitter 0.00
11_graphics_software_program_3d 0.00

You can also export tables as pandas DataFrames by removing the print_ prefix, and postfixing the method with _df or export tables in a given format, by using the export_<something> method instead of print_<something>.

model.topics_df()
model.topic_distribution_df("something something")
topic_data.representative_documents_df(5)
model.export_topics(format="markdown")
model.export_topic_distribution("something something", format="markdown")
topic_data.export_representative_documents(5, format="markdown")
model.export_topics(format="latex")
model.export_topic_distribution("something something", format="latex")
topic_data.export_representative_documents(5, format="latex")
model.export_topics(format="csv")
model.export_topic_distribution("something something", format="csv")
topic_data.export_representative_documents(5, format="csv")

Visualization with topicwizard

Turftopic comes with a number of model-specific visualization utilities, which you can check out on the models page. We do provide a general overview here, as well as instructions on how to use topicwizard with Turftopic for interactive topic interpretation.

To use topicwizard you will first have to install it:

pip install topic-wizard

Web App

The easiest way to investigate any topic model interactively is to use the topicwizard web app. You can launch the app either using a TopicData or a model object and a representative sample of documents.

topic_data.visualize_topicwizard()
import topicwizard

topicwizard.visualize(corpus=documents, model=model)

Figures

You can also produce individual interactive figures using the Figures API in topicwizard. Almost all figures in the Figures API can be called on the figures submodule of any TopicData object.

Interpret your models using interactive figures

topic_data.figures.topic_map()

topic_data.figures.topic_barcharts()

topic_data.figures.word_map()

topic_data.figures.topic_wordclouds()

topic_data.figures.document_map()

Datamapplot (Clustering models)

You can interactively explore clusters using datamapplot directly in Turftopic! You will first have to install datamapplot for this to work:

pip install turftopic[datamapplot]
from turftopic import ClusteringTopicModel
from turftopic.namers import OpenAITopicNamer

model = ClusteringTopicModel(feature_importance="centroid").fit(corpus)

namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)

fig = model.plot_clusters_datamapplot()
fig.save("clusters_visualization.html")
fig

Info

If you are not running Turftopic from a Jupyter notebook, make sure to call fig.show(). This will open up a new browser tab with the interactive figure.

Interactive figure to explore cluster structure in a clustering topic model.

Naming Topics

Topics in Turftopic by default are named based on the highest ranking keywords for a given topic. You might however want to get more fitting names for your topics either automatically or assigning them manually. See a our detailed guide about Namers to learn how you can use LLMs to assign names to topics.

Examples

from turftopic import KeyNMF
from turftopic.namers import OpenAITopicNamer

namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)

model.print_topics()
Topic ID Topic Name Highest Ranking
0 Operating Systems and Software windows, dos, os, ms, microsoft, unix, nt, memory, program, apps
1 Atheism and Belief Systems atheism, atheist, atheists, belief, religion, religious, theists, beliefs, believe, faith
2 Computer Architecture and Performance motherboard, ram, memory, cpu, bios, isa, speed, 486, bus, performance
...
from turftopic import SemanticSignalSeparation

model = SemanticSignalSeparation(10).fit(corpus)
model.rename_topics({0: "New name for topic 0", 5: "New name for topic 5"})

API Reference

turftopic.container.TopicContainer

Bases: ABC

Base class for classes that contain topical information.

Source code in turftopic/container.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
class TopicContainer(ABC):
    """Base class for classes that contain topical information."""

    @property
    def has_negative_side(self) -> bool:
        return np.any(self.components_ < 0)

    def get_topics(
        self, top_k: int = 10
    ) -> List[Tuple[Any, List[Tuple[str, float]]]]:
        """Returns high-level topic representations in form of the top K words
        in each topic.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.

        Returns
        -------
        list[tuple]
            List of topics. Each topic is a tuple of
            topic ID and the top k words.
            Top k words are a list of (word, word_importance) pairs.
        """
        n_topics = self.components_.shape[0]
        try:
            classes = self.classes_
        except AttributeError:
            classes = list(range(n_topics))
        highest = np.argpartition(-self.components_, top_k)[:, :top_k]
        vocab = self.get_vocab()
        top = []
        score = []
        for component, high in zip(self.components_, highest):
            importance = component[high]
            high = high[np.argsort(-importance)]
            score.append(component[high])
            top.append(vocab[high])
        topics = []
        for topic, words, scores in zip(classes, top, score):
            topic_data = (topic, list(zip(words, scores)))
            topics.append(topic_data)
        return topics

    def _top_terms(
        self, top_k: int = 10, positive: bool = True
    ) -> list[list[str]]:
        terms = []
        vocab = self.get_vocab()
        for component in self.components_:
            lowest = np.argpartition(component, top_k)[:top_k]
            lowest = lowest[np.argsort(component[lowest])]
            highest = np.argpartition(-component, top_k)[:top_k]
            highest = highest[np.argsort(-component[highest])]
            if not positive:
                terms.append(list(vocab[lowest]))
            else:
                terms.append(list(vocab[highest]))
        return terms

    def _rename_automatic(self, namer: TopicNamer) -> list[str]:
        self.topic_names_ = namer.name_topics(self._top_terms())
        return self.topic_names_

    def _topics_table(
        self,
        top_k: int = 10,
        show_scores: bool = False,
        show_negative: Optional[bool] = None,
    ) -> list[list[str]]:
        if show_negative is None:
            show_negative = self.has_negative_side
        columns = ["Topic ID"]
        if getattr(self, "topic_names_", None):
            columns.append("Topic Name")
        columns.append("Highest Ranking")
        if show_negative:
            columns.append("Lowest Ranking")
        rows = []
        try:
            classes = self.classes_
        except AttributeError:
            classes = list(range(self.components_.shape[0]))
        vocab = self.get_vocab()
        for i_topic, (topic_id, component) in enumerate(
            zip(classes, self.components_)
        ):
            highest = np.argpartition(-component, top_k)[:top_k]
            highest = highest[np.argsort(-component[highest])]
            lowest = np.argpartition(component, top_k)[:top_k]
            lowest = lowest[np.argsort(component[lowest])]
            if show_scores:
                concat_positive = ", ".join(
                    [
                        f"{word}({importance:.2f})"
                        for word, importance in zip(
                            vocab[highest], component[highest]
                        )
                    ]
                )
                concat_negative = ", ".join(
                    [
                        f"{word}({importance:.2f})"
                        for word, importance in zip(
                            vocab[lowest], component[lowest]
                        )
                    ]
                )
            else:
                concat_positive = ", ".join([word for word in vocab[highest]])
                concat_negative = ", ".join([word for word in vocab[lowest]])
            row = [f"{topic_id}"]
            if getattr(self, "topic_names_", None):
                row.append(self.topic_names_[i_topic])
            row.append(f"{concat_positive}")
            if show_negative:
                row.append(concat_negative)
            rows.append(row)
        return [columns, *rows]

    def print_topics(
        self,
        top_k: int = 10,
        show_scores: bool = False,
        show_negative: Optional[bool] = None,
    ):
        """Pretty prints topics in the model in a table.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.
        show_scores: bool, default False
            Indicates whether to show importance scores for each word.
        show_negative: bool, default False
            Indicates whether the most negative terms should also be displayed.
        """
        columns, *rows = self._topics_table(top_k, show_scores, show_negative)
        table = Table(show_lines=True)
        for column in columns:
            if column == "Highest Ranking":
                table.add_column(
                    column, justify="left", style="magenta", max_width=100
                )
            elif column == "Lowest Ranking":
                table.add_column(
                    column, justify="left", style="red", max_width=100
                )
            elif column == "Topic ID":
                table.add_column(column, style="blue", justify="right")
            else:
                table.add_column(column)
        for row in rows:
            table.add_row(*row)
        console = Console()
        console.print(table)

    def export_topics(
        self,
        top_k: int = 10,
        show_scores: bool = False,
        show_negative: Optional[bool] = None,
        format: str = "csv",
    ) -> str:
        """Exports top K words from topics in a table in a given format.
        Returns table as a pure string.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.
        show_scores: bool, default False
            Indicates whether to show importance scores for each word.
        show_negative: bool, default False
            Indicates whether the most negative terms should also be displayed.
        format: 'csv', 'latex' or 'markdown'
            Specifies which format should be used.
            'csv', 'latex' and 'markdown' are supported.
        """
        table = self._topics_table(
            top_k, show_scores, show_negative=show_negative
        )
        return export_table(table, format=format)

    def _representative_docs(
        self,
        topic_id,
        raw_documents=None,
        document_topic_matrix=None,
        top_k=5,
        show_negative: Optional[bool] = None,
    ) -> list[list[str]]:
        if show_negative is None:
            show_negative = self.has_negative_side
        raw_documents = raw_documents or getattr(self, "corpus", None)
        if raw_documents is None:
            raise ValueError(
                "No corpus was passed, can't search for representative documents."
            )
        document_topic_matrix = document_topic_matrix or getattr(
            self, "document_topic_matrix", None
        )
        if document_topic_matrix is None:
            try:
                document_topic_matrix = self.transform(raw_documents)
            except AttributeError:
                raise ValueError(
                    "Transductive methods cannot "
                    "infer topical content in documents.\n"
                    "Please pass a document_topic_matrix."
                )
        try:
            topic_id = list(self.classes_).index(topic_id)
        except AttributeError:
            pass
        kth = min(top_k, document_topic_matrix.shape[0] - 1)
        highest = np.argpartition(-document_topic_matrix[:, topic_id], kth)[
            :kth
        ]
        highest = highest[
            np.argsort(-document_topic_matrix[highest, topic_id])
        ]
        scores = document_topic_matrix[highest, topic_id]
        columns = []
        columns.append("Document")
        columns.append("Score")
        rows = []
        for document_id, score in zip(highest, scores):
            doc = raw_documents[document_id]
            doc = remove_whitespace(doc)
            if len(doc) > 300:
                doc = doc[:300] + "..."
            rows.append([doc, f"{score:.2f}"])
        if show_negative:
            rows.append(["...", ""])
            lowest = np.argpartition(document_topic_matrix[:, topic_id], kth)[
                :kth
            ]
            lowest = lowest[
                np.argsort(document_topic_matrix[lowest, topic_id])
            ]
            lowest = lowest[::-1]
            scores = document_topic_matrix[lowest, topic_id]
            for document_id, score in zip(lowest, scores):
                doc = raw_documents[document_id]
                doc = remove_whitespace(doc)
                if len(doc) > 300:
                    doc = doc[:300] + "..."
                rows.append([doc, f"{score:.2f}"])
        return [columns, *rows]

    def print_representative_documents(
        self,
        topic_id,
        raw_documents=None,
        document_topic_matrix=None,
        top_k=5,
        show_negative: Optional[bool] = None,
    ):
        """Pretty prints the highest ranking documents in a topic.

        Parameters
        ----------
        topic_id: int
            ID of the topic to display.
        raw_documents: list of str
            List of documents to consider.
        document_topic_matrix: ndarray of shape (n_documents, n_topics), optional
            Document topic matrix to use. This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 5
            Top K documents to show.
        show_negative: bool, default False
            Indicates whether lowest ranking documents should also be shown.
        """
        columns, *rows = self._representative_docs(
            topic_id,
            raw_documents,
            document_topic_matrix,
            top_k,
            show_negative,
        )
        table = Table(show_lines=True)
        table.add_column(
            "Document", justify="left", style="magenta", max_width=100
        )
        table.add_column("Score", style="blue", justify="right")
        for row in rows:
            table.add_row(*row)
        console = Console()
        console.print(table)

    def export_representative_documents(
        self,
        topic_id,
        raw_documents=None,
        document_topic_matrix=None,
        top_k=5,
        show_negative: Optional[bool] = None,
        format: str = "csv",
    ):
        """Exports the highest ranking documents in a topic as a text table.

        Parameters
        ----------
        topic_id: int
            ID of the topic to display.
        raw_documents: list of str
            List of documents to consider.
        document_topic_matrix: ndarray of shape (n_topics, n_topics), optional
            Document topic matrix to use. This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 5
            Top K documents to show.
        show_negative: bool, default False
            Indicates whether lowest ranking documents should also be shown.
        format: 'csv', 'latex' or 'markdown'
            Specifies which format should be used.
            'csv', 'latex' and 'markdown' are supported.
        """
        table = self._representative_docs(
            topic_id,
            raw_documents,
            document_topic_matrix,
            top_k,
            show_negative,
        )
        return export_table(table, format=format)

    @property
    def topic_names(self) -> list[str]:
        """Names of the topics based on the highest scoring 4 terms."""
        topic_names = getattr(self, "topic_names_", None)
        if topic_names is not None:
            return list(topic_names)
        topic_desc = self.get_topics(top_k=4)
        names = []
        for topic_id, terms in topic_desc:
            concat_words = "_".join([word for word, importance in terms])
            names.append(f"{topic_id}_{concat_words}")
        return names

    def rename_topics(
        self, names: Union[list[str], dict[int, str], TopicNamer]
    ) -> None:
        """Rename topics in a model manually or automatically, using a namer.

        Examples:
        ```python
        model.rename_topics(["Automobiles", "Telephones"])
        # Or:
        model.rename_topics({-1: "Outliers", 2: "Christianity"})
        # Or:
        namer = OpenAITopicNamer()
        model.rename_topics(namer)
        ```

        Parameters
        ----------
        names: list[str] or dict[int,str]
            Should be a list of topic names, or a mapping of topic IDs to names.
        """
        if isinstance(names, TopicNamer):
            self._rename_automatic(names)
        elif isinstance(names, dict):
            topic_names = self.topic_names
            for topic_id, topic_name in names.items():
                try:
                    topic_id = list(self.classes_).index(topic_id)
                except AttributeError:
                    pass
                topic_names[topic_id] = topic_name
            self.topic_names_ = topic_names
        else:
            names = list(names)
            n_given = len(names)
            n_topics = self.components_.shape[0]
            if n_topics != n_given:
                raise ValueError(
                    f"Number of topics ({n_topics}) doesn't match the length of the given topic name list ({n_given})."
                )
            self.topic_names_ = names

    def _topic_distribution(
        self, text=None, topic_dist=None, top_k: int = 10
    ) -> list[list[str]]:
        if topic_dist is None:
            if text is None:
                raise ValueError(
                    "You should either pass a text or a distribution."
                )
            try:
                topic_dist = self.transform([text])
            except AttributeError:
                raise ValueError(
                    "Transductive methods cannot "
                    "infer topical content in documents.\n"
                    "Please pass a topic distribution."
                )
        topic_dist = np.squeeze(np.asarray(topic_dist))
        highest = np.argsort(-topic_dist)[:top_k]
        columns = []
        columns.append("Topic name")
        columns.append("Score")
        rows = []
        for ind in highest:
            score = topic_dist[ind]
            rows.append([self.topic_names[ind], f"{score:.2f}"])
        return [columns, *rows]

    def print_topic_distribution(
        self, text=None, topic_dist=None, top_k: int = 10
    ):
        """Pretty prints topic distribution in a document.

        Parameters
        ----------
        text: str, optional
            Text to infer topic distribution for.
        topic_dist: ndarray of shape (n_topics), optional
            Already inferred topic distribution for the text.
            This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 10
            Top K topics to show.
        """
        columns, *rows = self._topic_distribution(text, topic_dist, top_k)
        table = Table()
        table.add_column("Topic name", justify="left", style="magenta")
        table.add_column("Score", justify="right", style="blue")
        for row in rows:
            table.add_row(*row)
        console = Console()
        console.print(table)

    def export_topic_distribution(
        self, text=None, topic_dist=None, top_k: int = 10, format="csv"
    ) -> str:
        """Exports topic distribution as a text table.

        Parameters
        ----------
        text: str, optional
            Text to infer topic distribution for.
        topic_dist: ndarray of shape (n_topics), optional
            Already inferred topic distribution for the text.
            This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 10
            Top K topics to show.
        format: 'csv', 'latex' or 'markdown'
            Specifies which format should be used.
            'csv', 'latex' and 'markdown' are supported.
        """
        table = self._topic_distribution(text, topic_dist, top_k)
        return export_table(table, format=format)

    def topics_df(
        self,
        top_k: int = 10,
        show_scores: bool = False,
        show_negative: Optional[bool] = None,
    ):
        """Extracts topics into a pandas dataframe.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.
        show_scores: bool, default False
            Indicates whether to show importance scores for each word.
        show_negative: bool, default False
            Indicates whether the most negative terms should also be displayed.
        """
        try:
            import pandas as pd
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "You need to pip install pandas to be able to use dataframes."
            )
        columns, *rows = self._topics_table(top_k, show_scores, show_negative)
        return pd.DataFrame(rows, columns=columns)

    def representative_documents_df(
        self,
        topic_id,
        raw_documents=None,
        document_topic_matrix=None,
        top_k=5,
        show_negative: Optional[bool] = None,
    ):
        """Collects highest ranking documents in a topic to a dataframe.

        Parameters
        ----------
        topic_id: int
            ID of the topic to display.
        raw_documents: list of str
            List of documents to consider.
        document_topic_matrix: ndarray of shape (n_documents, n_topics), optional
            Document topic matrix to use. This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 5
            Top K documents to show.
        show_negative: bool, default False
            Indicates whether lowest ranking documents should also be shown.
        """
        try:
            import pandas as pd
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "You need to pip install pandas to be able to use dataframes."
            )
        if show_negative is None:
            show_negative = self.has_negative_side
        raw_documents = raw_documents or getattr(self, "corpus", None)
        if raw_documents is None:
            raise ValueError(
                "No corpus was passed, can't search for representative documents."
            )
        document_topic_matrix = document_topic_matrix or getattr(
            self, "document_topic_matrix", None
        )
        if document_topic_matrix is None:
            try:
                document_topic_matrix = self.transform(raw_documents)
            except AttributeError:
                raise ValueError(
                    "Transductive methods cannot "
                    "infer topical content in documents.\n"
                    "Please pass a document_topic_matrix."
                )
        try:
            topic_id = list(self.classes_).index(topic_id)
        except AttributeError:
            pass
        kth = min(top_k, document_topic_matrix.shape[0] - 1)
        highest = np.argpartition(-document_topic_matrix[:, topic_id], kth)[
            :kth
        ]
        highest = highest[
            np.argsort(-document_topic_matrix[highest, topic_id])
        ]
        scores = document_topic_matrix[highest, topic_id]
        columns = [["Document", "Score"]]
        rows = []
        for document_id, score in zip(highest, scores):
            doc = raw_documents[document_id]
            rows.append([doc, score])
        if show_negative:
            lowest = np.argpartition(document_topic_matrix[:, topic_id], kth)[
                :kth
            ]
            lowest = lowest[
                np.argsort(document_topic_matrix[lowest, topic_id])
            ]
            lowest = lowest[::-1]
            scores = document_topic_matrix[lowest, topic_id]
            for document_id, score in zip(lowest, scores):
                doc = raw_documents[document_id]
                rows.append([doc, score])
        return pd.DataFrame(rows, columns=columns)

    def topic_distribution_df(
        self, text=None, topic_dist=None, top_k: int = 10
    ):
        """Extracts topic distribution into a dataframe.

        Parameters
        ----------
        text: str, optional
            Text to infer topic distribution for.
        topic_dist: ndarray of shape (n_topics), optional
            Already inferred topic distribution for the text.
            This is useful for transductive methods,
            as they cannot infer topics from text.
        top_k: int, default 10
            Top K topics to show.
        """
        try:
            import pandas as pd
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "You need to pip install pandas to be able to use dataframes."
            )
        if topic_dist is None:
            if text is None:
                raise ValueError(
                    "You should either pass a text or a distribution."
                )
            try:
                topic_dist = self.transform([text])
            except AttributeError:
                raise ValueError(
                    "Transductive methods cannot "
                    "infer topical content in documents.\n"
                    "Please pass a topic distribution."
                )
        topic_dist = np.squeeze(np.asarray(topic_dist))
        highest = np.argsort(-topic_dist)[:top_k]
        columns = []
        columns.append("Topic name")
        columns.append("Score")
        rows = []
        for ind in highest:
            score = topic_dist[ind]
            rows.append([self.topic_names[ind], score])
        return pd.DataFrame(rows, columns=columns)

    def get_time_slices(self) -> list[tuple[datetime, datetime]]:
        """Returns starting and ending datetime of
        each timeslice in the model."""
        bins = getattr(self, "time_bin_edges", None)
        if bins is None:
            raise AttributeError(
                "Topic model is not dynamic, time_bin_edges attribute is missing."
            )
        res = []
        for i_bin, slice_end in enumerate(bins[1:]):
            res.append((bins[i_bin], slice_end))
        return res

    def get_topics_over_time(
        self, top_k: int = 10
    ) -> list[list[tuple[Any, list[tuple[str, float]]]]]:
        """Returns high-level topic representations in form of the top K words
        in each topic.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.

        Returns
        -------
        list[list[tuple]]
            List of topics over each time slice in the dynamic model.
            Each time slice is a list of topics.
            Each topic is a tuple of topic ID and the top k words.
            Top k words are a list of (word, word_importance) pairs.
        """
        temporal_components = getattr(self, "temporal_components_", None)
        if temporal_components is None:
            raise AttributeError(
                "Topic model is not dynamic, temporal_components_ attribute is missing."
            )
        n_topics = temporal_components.shape[1]
        try:
            classes = self.classes_
        except AttributeError:
            classes = list(range(n_topics))
        res = []
        for components in temporal_components:
            highest = np.argpartition(-components, top_k)[:, :top_k]
            vocab = self.get_vocab()
            top = []
            score = []
            for component, high in zip(components, highest):
                importance = component[high]
                high = high[np.argsort(-importance)]
                score.append(component[high])
                top.append(vocab[high])
            topics = []
            for topic, words, scores in zip(classes, top, score):
                topic_data = (topic, list(zip(words, scores)))
                topics.append(topic_data)
            res.append(topics)
        return res

    def _topics_over_time(
        self,
        top_k: int = 5,
        show_scores: bool = False,
        date_format: str = "%Y %m %d",
    ) -> list[list[str]]:
        temporal_components = getattr(self, "temporal_components_", None)
        if temporal_components is None:
            raise AttributeError(
                "Topic model is not dynamic, temporal_components_ attribute is missing."
            )
        temporal_importance = getattr(self, "temporal_importance_", None)
        if temporal_components is None:
            raise AttributeError(
                "Topic model is not dynamic, temporal_importance_ attribute is missing."
            )
        slices = self.get_time_slices()
        slice_names = []
        for start_dt, end_dt in slices:
            start_str = start_dt.strftime(date_format)
            end_str = end_dt.strftime(date_format)
            slice_names.append(f"{start_str} - {end_str}")
        n_topics = temporal_components.shape[1]
        try:
            topic_names = self.topic_names
        except AttributeError:
            topic_names = [f"Topic {i}" for i in range(n_topics)]
        columns = []
        rows = []
        columns.append("Time Slice")
        for topic in topic_names:
            columns.append(topic)
        for slice_name, components, weights in zip(
            slice_names, temporal_components, temporal_importance
        ):
            fields = []
            fields.append(slice_name)
            vocab = self.get_vocab()
            for component, weight in zip(components, weights):
                if np.all(component == 0) or np.all(np.isnan(component)):
                    fields.append("Topic not present.")
                    continue
                if weight < 0:
                    component = -component
                top = np.argpartition(-component, top_k)[:top_k]
                importance = component[top]
                top = top[np.argsort(-importance)]
                top = top[importance != 0]
                scores = component[top]
                words = vocab[top]
                if show_scores:
                    concat_words = ", ".join(
                        [
                            f"{word}({importance:.2f})"
                            for word, importance in zip(words, scores)
                        ]
                    )
                else:
                    concat_words = ", ".join([word for word in words])
                fields.append(concat_words)
            rows.append(fields)
        return [columns, *rows]

    def print_topics_over_time(
        self,
        top_k: int = 5,
        show_scores: bool = False,
        date_format: str = "%Y %m %d",
    ):
        """Pretty prints topics in the model in a table.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.
        show_scores: bool, default False
            Indicates whether to show importance scores for each word.
        """
        columns, *rows = self._topics_over_time(
            top_k, show_scores, date_format
        )
        table = Table(show_lines=True)
        for column in columns:
            table.add_column(column)
        for row in rows:
            table.add_row(*row)
        console = Console()
        console.print(table)

    def export_topics_over_time(
        self,
        top_k: int = 5,
        show_scores: bool = False,
        date_format: str = "%Y %m %d",
        format="csv",
    ) -> str:
        """Pretty prints topics in the model in a table.

        Parameters
        ----------
        top_k: int, default 10
            Number of top words to return for each topic.
        show_scores: bool, default False
            Indicates whether to show importance scores for each word.
        format: 'csv', 'latex' or 'markdown'
            Specifies which format should be used.
            'csv', 'latex' and 'markdown' are supported.
        """
        table = self._topics_over_time(top_k, show_scores, date_format)
        return export_table(table, format=format)

    def topics_over_time_df(
        self,
        top_k: int = 5,
        show_scores: bool = False,
        format="csv",
    ):
        try:
            import pandas as pd
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "You need to pip install pandas to be able to use dataframes."
            )

        def parse_time_slice(slice: str) -> tuple[datetime, datetime]:
            date_format = "%Y %m %d"
            start_date, end_date = slice.split(" - ")
            return datetime.strptime(
                start_date, date_format
            ), datetime.strptime(end_date, date_format)

        columns, *rows = self._topics_over_time(top_k, show_scores)
        df = pd.DataFrame(rows, columns=columns)
        df["Time Slice"] = df["Time Slice"].map(parse_time_slice)
        return df

    def plot_topics_over_time(
        self,
        top_k: int = 6,
        color_discrete_sequence: Optional[Iterable[str]] = None,
        color_discrete_map: Optional[dict[str, str]] = None,
    ):
        """Displays topics over time in the fitted dynamic model on a dynamic HTML figure.

        > You will need to `pip install plotly` to use this method.

        Parameters
        ----------
        top_k: int, default 6
            Number of top words per topic to display on the figure.
        color_discrete_sequence: Iterable[str], default None
            Color palette to use in the plot.
            Example:

            ```python
            import plotly.express as px
            model.plot_topics_over_time(color_discrete_sequence=px.colors.qualitative.Light24)
            ```

        color_discrete_map: dict[str, str], default None
            Topic names mapped to the colors that should
            be associated with them.

        Returns
        -------
        go.Figure
            Plotly graph objects Figure, that can be displayed or exported as
            HTML or static image.
        """
        try:
            import plotly.express as px
            import plotly.graph_objects as go
        except (ImportError, ModuleNotFoundError) as e:
            raise ModuleNotFoundError(
                "Please install plotly if you intend to use plots in Turftopic."
            ) from e
        temporal_components = getattr(self, "temporal_components_", None)
        if temporal_components is None:
            raise AttributeError(
                "Topic model is not dynamic, temporal_components_ attribute is missing."
            )
        temporal_importance = getattr(self, "temporal_importance_", None)
        if temporal_components is None:
            raise AttributeError(
                "Topic model is not dynamic, temporal_importance_ attribute is missing."
            )
        if color_discrete_sequence is not None:
            topic_colors = itertools.cycle(color_discrete_sequence)
        elif color_discrete_map is not None:
            topic_colors = [
                color_discrete_map[topic_name]
                for topic_name in self.topic_names
            ]
        else:
            topic_colors = px.colors.qualitative.Dark24
        fig = go.Figure()
        vocab = self.get_vocab()
        n_topics = temporal_components.shape[1]
        try:
            topic_names = self.topic_names
        except AttributeError:
            topic_names = [f"Topic {i}" for i in range(n_topics)]
        for trace_color, (i_topic, topic_imp_t) in zip(
            itertools.cycle(topic_colors), enumerate(temporal_importance.T)
        ):
            component_over_time = temporal_components[:, i_topic, :]
            name_over_time = []
            for component, importance in zip(component_over_time, topic_imp_t):
                if importance < 0:
                    component = -component
                top = np.argpartition(-component, top_k)[:top_k]
                values = component[top]
                if np.all(values == 0) or np.all(np.isnan(values)):
                    name_over_time.append("<not present>")
                    continue
                top = top[np.argsort(-values)]
                name_over_time.append(", ".join(vocab[top]))
            times = self.time_bin_edges[:-1]
            fig.add_trace(
                go.Scatter(
                    x=times,
                    y=topic_imp_t,
                    mode="markers+lines",
                    text=name_over_time,
                    name=topic_names[i_topic],
                    hovertemplate="<b>%{text}</b>",
                    marker=dict(
                        line=dict(width=2, color="black"),
                        size=14,
                        color=trace_color,
                    ),
                    line=dict(width=3),
                )
            )
        fig.update_layout(
            template="plotly_white",
            hoverlabel=dict(font_size=16, bgcolor="white"),
            hovermode="x",
        )
        fig.add_hline(y=0, line_dash="dash", opacity=0.5)
        fig.update_xaxes(title="Time Slice Start")
        fig.update_yaxes(title="Topic Importance")
        return fig

topic_names property

Names of the topics based on the highest scoring 4 terms.

export_representative_documents(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None, format='csv')

Exports the highest ranking documents in a topic as a text table.

Parameters:

Name Type Description Default
topic_id

ID of the topic to display.

required
raw_documents

List of documents to consider.

None
document_topic_matrix

Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k

Top K documents to show.

5
show_negative Optional[bool]

Indicates whether lowest ranking documents should also be shown.

None
format str

Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported.

'csv'
Source code in turftopic/container.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def export_representative_documents(
    self,
    topic_id,
    raw_documents=None,
    document_topic_matrix=None,
    top_k=5,
    show_negative: Optional[bool] = None,
    format: str = "csv",
):
    """Exports the highest ranking documents in a topic as a text table.

    Parameters
    ----------
    topic_id: int
        ID of the topic to display.
    raw_documents: list of str
        List of documents to consider.
    document_topic_matrix: ndarray of shape (n_topics, n_topics), optional
        Document topic matrix to use. This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 5
        Top K documents to show.
    show_negative: bool, default False
        Indicates whether lowest ranking documents should also be shown.
    format: 'csv', 'latex' or 'markdown'
        Specifies which format should be used.
        'csv', 'latex' and 'markdown' are supported.
    """
    table = self._representative_docs(
        topic_id,
        raw_documents,
        document_topic_matrix,
        top_k,
        show_negative,
    )
    return export_table(table, format=format)

export_topic_distribution(text=None, topic_dist=None, top_k=10, format='csv')

Exports topic distribution as a text table.

Parameters:

Name Type Description Default
text

Text to infer topic distribution for.

None
topic_dist

Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k int

Top K topics to show.

10
format

Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported.

'csv'
Source code in turftopic/container.py
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def export_topic_distribution(
    self, text=None, topic_dist=None, top_k: int = 10, format="csv"
) -> str:
    """Exports topic distribution as a text table.

    Parameters
    ----------
    text: str, optional
        Text to infer topic distribution for.
    topic_dist: ndarray of shape (n_topics), optional
        Already inferred topic distribution for the text.
        This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 10
        Top K topics to show.
    format: 'csv', 'latex' or 'markdown'
        Specifies which format should be used.
        'csv', 'latex' and 'markdown' are supported.
    """
    table = self._topic_distribution(text, topic_dist, top_k)
    return export_table(table, format=format)

export_topics(top_k=10, show_scores=False, show_negative=None, format='csv')

Exports top K words from topics in a table in a given format. Returns table as a pure string.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

10
show_scores bool

Indicates whether to show importance scores for each word.

False
show_negative Optional[bool]

Indicates whether the most negative terms should also be displayed.

None
format str

Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported.

'csv'
Source code in turftopic/container.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def export_topics(
    self,
    top_k: int = 10,
    show_scores: bool = False,
    show_negative: Optional[bool] = None,
    format: str = "csv",
) -> str:
    """Exports top K words from topics in a table in a given format.
    Returns table as a pure string.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.
    show_scores: bool, default False
        Indicates whether to show importance scores for each word.
    show_negative: bool, default False
        Indicates whether the most negative terms should also be displayed.
    format: 'csv', 'latex' or 'markdown'
        Specifies which format should be used.
        'csv', 'latex' and 'markdown' are supported.
    """
    table = self._topics_table(
        top_k, show_scores, show_negative=show_negative
    )
    return export_table(table, format=format)

export_topics_over_time(top_k=5, show_scores=False, date_format='%Y %m %d', format='csv')

Pretty prints topics in the model in a table.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

5
show_scores bool

Indicates whether to show importance scores for each word.

False
format

Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported.

'csv'
Source code in turftopic/container.py
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
def export_topics_over_time(
    self,
    top_k: int = 5,
    show_scores: bool = False,
    date_format: str = "%Y %m %d",
    format="csv",
) -> str:
    """Pretty prints topics in the model in a table.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.
    show_scores: bool, default False
        Indicates whether to show importance scores for each word.
    format: 'csv', 'latex' or 'markdown'
        Specifies which format should be used.
        'csv', 'latex' and 'markdown' are supported.
    """
    table = self._topics_over_time(top_k, show_scores, date_format)
    return export_table(table, format=format)

get_time_slices()

Returns starting and ending datetime of each timeslice in the model.

Source code in turftopic/container.py
628
629
630
631
632
633
634
635
636
637
638
639
def get_time_slices(self) -> list[tuple[datetime, datetime]]:
    """Returns starting and ending datetime of
    each timeslice in the model."""
    bins = getattr(self, "time_bin_edges", None)
    if bins is None:
        raise AttributeError(
            "Topic model is not dynamic, time_bin_edges attribute is missing."
        )
    res = []
    for i_bin, slice_end in enumerate(bins[1:]):
        res.append((bins[i_bin], slice_end))
    return res

get_topics(top_k=10)

Returns high-level topic representations in form of the top K words in each topic.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

10

Returns:

Type Description
list[tuple]

List of topics. Each topic is a tuple of topic ID and the top k words. Top k words are a list of (word, word_importance) pairs.

Source code in turftopic/container.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def get_topics(
    self, top_k: int = 10
) -> List[Tuple[Any, List[Tuple[str, float]]]]:
    """Returns high-level topic representations in form of the top K words
    in each topic.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.

    Returns
    -------
    list[tuple]
        List of topics. Each topic is a tuple of
        topic ID and the top k words.
        Top k words are a list of (word, word_importance) pairs.
    """
    n_topics = self.components_.shape[0]
    try:
        classes = self.classes_
    except AttributeError:
        classes = list(range(n_topics))
    highest = np.argpartition(-self.components_, top_k)[:, :top_k]
    vocab = self.get_vocab()
    top = []
    score = []
    for component, high in zip(self.components_, highest):
        importance = component[high]
        high = high[np.argsort(-importance)]
        score.append(component[high])
        top.append(vocab[high])
    topics = []
    for topic, words, scores in zip(classes, top, score):
        topic_data = (topic, list(zip(words, scores)))
        topics.append(topic_data)
    return topics

get_topics_over_time(top_k=10)

Returns high-level topic representations in form of the top K words in each topic.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

10

Returns:

Type Description
list[list[tuple]]

List of topics over each time slice in the dynamic model. Each time slice is a list of topics. Each topic is a tuple of topic ID and the top k words. Top k words are a list of (word, word_importance) pairs.

Source code in turftopic/container.py
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
def get_topics_over_time(
    self, top_k: int = 10
) -> list[list[tuple[Any, list[tuple[str, float]]]]]:
    """Returns high-level topic representations in form of the top K words
    in each topic.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.

    Returns
    -------
    list[list[tuple]]
        List of topics over each time slice in the dynamic model.
        Each time slice is a list of topics.
        Each topic is a tuple of topic ID and the top k words.
        Top k words are a list of (word, word_importance) pairs.
    """
    temporal_components = getattr(self, "temporal_components_", None)
    if temporal_components is None:
        raise AttributeError(
            "Topic model is not dynamic, temporal_components_ attribute is missing."
        )
    n_topics = temporal_components.shape[1]
    try:
        classes = self.classes_
    except AttributeError:
        classes = list(range(n_topics))
    res = []
    for components in temporal_components:
        highest = np.argpartition(-components, top_k)[:, :top_k]
        vocab = self.get_vocab()
        top = []
        score = []
        for component, high in zip(components, highest):
            importance = component[high]
            high = high[np.argsort(-importance)]
            score.append(component[high])
            top.append(vocab[high])
        topics = []
        for topic, words, scores in zip(classes, top, score):
            topic_data = (topic, list(zip(words, scores)))
            topics.append(topic_data)
        res.append(topics)
    return res

plot_topics_over_time(top_k=6, color_discrete_sequence=None, color_discrete_map=None)

Displays topics over time in the fitted dynamic model on a dynamic HTML figure.

You will need to pip install plotly to use this method.

Parameters:

Name Type Description Default
top_k int

Number of top words per topic to display on the figure.

6
color_discrete_sequence Optional[Iterable[str]]

Color palette to use in the plot. Example:

import plotly.express as px
model.plot_topics_over_time(color_discrete_sequence=px.colors.qualitative.Light24)
None
color_discrete_map Optional[dict[str, str]]

Topic names mapped to the colors that should be associated with them.

None

Returns:

Type Description
Figure

Plotly graph objects Figure, that can be displayed or exported as HTML or static image.

Source code in turftopic/container.py
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def plot_topics_over_time(
    self,
    top_k: int = 6,
    color_discrete_sequence: Optional[Iterable[str]] = None,
    color_discrete_map: Optional[dict[str, str]] = None,
):
    """Displays topics over time in the fitted dynamic model on a dynamic HTML figure.

    > You will need to `pip install plotly` to use this method.

    Parameters
    ----------
    top_k: int, default 6
        Number of top words per topic to display on the figure.
    color_discrete_sequence: Iterable[str], default None
        Color palette to use in the plot.
        Example:

        ```python
        import plotly.express as px
        model.plot_topics_over_time(color_discrete_sequence=px.colors.qualitative.Light24)
        ```

    color_discrete_map: dict[str, str], default None
        Topic names mapped to the colors that should
        be associated with them.

    Returns
    -------
    go.Figure
        Plotly graph objects Figure, that can be displayed or exported as
        HTML or static image.
    """
    try:
        import plotly.express as px
        import plotly.graph_objects as go
    except (ImportError, ModuleNotFoundError) as e:
        raise ModuleNotFoundError(
            "Please install plotly if you intend to use plots in Turftopic."
        ) from e
    temporal_components = getattr(self, "temporal_components_", None)
    if temporal_components is None:
        raise AttributeError(
            "Topic model is not dynamic, temporal_components_ attribute is missing."
        )
    temporal_importance = getattr(self, "temporal_importance_", None)
    if temporal_components is None:
        raise AttributeError(
            "Topic model is not dynamic, temporal_importance_ attribute is missing."
        )
    if color_discrete_sequence is not None:
        topic_colors = itertools.cycle(color_discrete_sequence)
    elif color_discrete_map is not None:
        topic_colors = [
            color_discrete_map[topic_name]
            for topic_name in self.topic_names
        ]
    else:
        topic_colors = px.colors.qualitative.Dark24
    fig = go.Figure()
    vocab = self.get_vocab()
    n_topics = temporal_components.shape[1]
    try:
        topic_names = self.topic_names
    except AttributeError:
        topic_names = [f"Topic {i}" for i in range(n_topics)]
    for trace_color, (i_topic, topic_imp_t) in zip(
        itertools.cycle(topic_colors), enumerate(temporal_importance.T)
    ):
        component_over_time = temporal_components[:, i_topic, :]
        name_over_time = []
        for component, importance in zip(component_over_time, topic_imp_t):
            if importance < 0:
                component = -component
            top = np.argpartition(-component, top_k)[:top_k]
            values = component[top]
            if np.all(values == 0) or np.all(np.isnan(values)):
                name_over_time.append("<not present>")
                continue
            top = top[np.argsort(-values)]
            name_over_time.append(", ".join(vocab[top]))
        times = self.time_bin_edges[:-1]
        fig.add_trace(
            go.Scatter(
                x=times,
                y=topic_imp_t,
                mode="markers+lines",
                text=name_over_time,
                name=topic_names[i_topic],
                hovertemplate="<b>%{text}</b>",
                marker=dict(
                    line=dict(width=2, color="black"),
                    size=14,
                    color=trace_color,
                ),
                line=dict(width=3),
            )
        )
    fig.update_layout(
        template="plotly_white",
        hoverlabel=dict(font_size=16, bgcolor="white"),
        hovermode="x",
    )
    fig.add_hline(y=0, line_dash="dash", opacity=0.5)
    fig.update_xaxes(title="Time Slice Start")
    fig.update_yaxes(title="Topic Importance")
    return fig

print_representative_documents(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None)

Pretty prints the highest ranking documents in a topic.

Parameters:

Name Type Description Default
topic_id

ID of the topic to display.

required
raw_documents

List of documents to consider.

None
document_topic_matrix

Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k

Top K documents to show.

5
show_negative Optional[bool]

Indicates whether lowest ranking documents should also be shown.

None
Source code in turftopic/container.py
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def print_representative_documents(
    self,
    topic_id,
    raw_documents=None,
    document_topic_matrix=None,
    top_k=5,
    show_negative: Optional[bool] = None,
):
    """Pretty prints the highest ranking documents in a topic.

    Parameters
    ----------
    topic_id: int
        ID of the topic to display.
    raw_documents: list of str
        List of documents to consider.
    document_topic_matrix: ndarray of shape (n_documents, n_topics), optional
        Document topic matrix to use. This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 5
        Top K documents to show.
    show_negative: bool, default False
        Indicates whether lowest ranking documents should also be shown.
    """
    columns, *rows = self._representative_docs(
        topic_id,
        raw_documents,
        document_topic_matrix,
        top_k,
        show_negative,
    )
    table = Table(show_lines=True)
    table.add_column(
        "Document", justify="left", style="magenta", max_width=100
    )
    table.add_column("Score", style="blue", justify="right")
    for row in rows:
        table.add_row(*row)
    console = Console()
    console.print(table)

print_topic_distribution(text=None, topic_dist=None, top_k=10)

Pretty prints topic distribution in a document.

Parameters:

Name Type Description Default
text

Text to infer topic distribution for.

None
topic_dist

Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k int

Top K topics to show.

10
Source code in turftopic/container.py
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def print_topic_distribution(
    self, text=None, topic_dist=None, top_k: int = 10
):
    """Pretty prints topic distribution in a document.

    Parameters
    ----------
    text: str, optional
        Text to infer topic distribution for.
    topic_dist: ndarray of shape (n_topics), optional
        Already inferred topic distribution for the text.
        This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 10
        Top K topics to show.
    """
    columns, *rows = self._topic_distribution(text, topic_dist, top_k)
    table = Table()
    table.add_column("Topic name", justify="left", style="magenta")
    table.add_column("Score", justify="right", style="blue")
    for row in rows:
        table.add_row(*row)
    console = Console()
    console.print(table)

print_topics(top_k=10, show_scores=False, show_negative=None)

Pretty prints topics in the model in a table.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

10
show_scores bool

Indicates whether to show importance scores for each word.

False
show_negative Optional[bool]

Indicates whether the most negative terms should also be displayed.

None
Source code in turftopic/container.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def print_topics(
    self,
    top_k: int = 10,
    show_scores: bool = False,
    show_negative: Optional[bool] = None,
):
    """Pretty prints topics in the model in a table.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.
    show_scores: bool, default False
        Indicates whether to show importance scores for each word.
    show_negative: bool, default False
        Indicates whether the most negative terms should also be displayed.
    """
    columns, *rows = self._topics_table(top_k, show_scores, show_negative)
    table = Table(show_lines=True)
    for column in columns:
        if column == "Highest Ranking":
            table.add_column(
                column, justify="left", style="magenta", max_width=100
            )
        elif column == "Lowest Ranking":
            table.add_column(
                column, justify="left", style="red", max_width=100
            )
        elif column == "Topic ID":
            table.add_column(column, style="blue", justify="right")
        else:
            table.add_column(column)
    for row in rows:
        table.add_row(*row)
    console = Console()
    console.print(table)

print_topics_over_time(top_k=5, show_scores=False, date_format='%Y %m %d')

Pretty prints topics in the model in a table.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

5
show_scores bool

Indicates whether to show importance scores for each word.

False
Source code in turftopic/container.py
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
def print_topics_over_time(
    self,
    top_k: int = 5,
    show_scores: bool = False,
    date_format: str = "%Y %m %d",
):
    """Pretty prints topics in the model in a table.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.
    show_scores: bool, default False
        Indicates whether to show importance scores for each word.
    """
    columns, *rows = self._topics_over_time(
        top_k, show_scores, date_format
    )
    table = Table(show_lines=True)
    for column in columns:
        table.add_column(column)
    for row in rows:
        table.add_row(*row)
    console = Console()
    console.print(table)

rename_topics(names)

Rename topics in a model manually or automatically, using a namer.

Examples:

model.rename_topics(["Automobiles", "Telephones"])
# Or:
model.rename_topics({-1: "Outliers", 2: "Christianity"})
# Or:
namer = OpenAITopicNamer()
model.rename_topics(namer)

Parameters:

Name Type Description Default
names Union[list[str], dict[int, str], TopicNamer]

Should be a list of topic names, or a mapping of topic IDs to names.

required
Source code in turftopic/container.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def rename_topics(
    self, names: Union[list[str], dict[int, str], TopicNamer]
) -> None:
    """Rename topics in a model manually or automatically, using a namer.

    Examples:
    ```python
    model.rename_topics(["Automobiles", "Telephones"])
    # Or:
    model.rename_topics({-1: "Outliers", 2: "Christianity"})
    # Or:
    namer = OpenAITopicNamer()
    model.rename_topics(namer)
    ```

    Parameters
    ----------
    names: list[str] or dict[int,str]
        Should be a list of topic names, or a mapping of topic IDs to names.
    """
    if isinstance(names, TopicNamer):
        self._rename_automatic(names)
    elif isinstance(names, dict):
        topic_names = self.topic_names
        for topic_id, topic_name in names.items():
            try:
                topic_id = list(self.classes_).index(topic_id)
            except AttributeError:
                pass
            topic_names[topic_id] = topic_name
        self.topic_names_ = topic_names
    else:
        names = list(names)
        n_given = len(names)
        n_topics = self.components_.shape[0]
        if n_topics != n_given:
            raise ValueError(
                f"Number of topics ({n_topics}) doesn't match the length of the given topic name list ({n_given})."
            )
        self.topic_names_ = names

representative_documents_df(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None)

Collects highest ranking documents in a topic to a dataframe.

Parameters:

Name Type Description Default
topic_id

ID of the topic to display.

required
raw_documents

List of documents to consider.

None
document_topic_matrix

Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k

Top K documents to show.

5
show_negative Optional[bool]

Indicates whether lowest ranking documents should also be shown.

None
Source code in turftopic/container.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def representative_documents_df(
    self,
    topic_id,
    raw_documents=None,
    document_topic_matrix=None,
    top_k=5,
    show_negative: Optional[bool] = None,
):
    """Collects highest ranking documents in a topic to a dataframe.

    Parameters
    ----------
    topic_id: int
        ID of the topic to display.
    raw_documents: list of str
        List of documents to consider.
    document_topic_matrix: ndarray of shape (n_documents, n_topics), optional
        Document topic matrix to use. This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 5
        Top K documents to show.
    show_negative: bool, default False
        Indicates whether lowest ranking documents should also be shown.
    """
    try:
        import pandas as pd
    except ModuleNotFoundError:
        raise ModuleNotFoundError(
            "You need to pip install pandas to be able to use dataframes."
        )
    if show_negative is None:
        show_negative = self.has_negative_side
    raw_documents = raw_documents or getattr(self, "corpus", None)
    if raw_documents is None:
        raise ValueError(
            "No corpus was passed, can't search for representative documents."
        )
    document_topic_matrix = document_topic_matrix or getattr(
        self, "document_topic_matrix", None
    )
    if document_topic_matrix is None:
        try:
            document_topic_matrix = self.transform(raw_documents)
        except AttributeError:
            raise ValueError(
                "Transductive methods cannot "
                "infer topical content in documents.\n"
                "Please pass a document_topic_matrix."
            )
    try:
        topic_id = list(self.classes_).index(topic_id)
    except AttributeError:
        pass
    kth = min(top_k, document_topic_matrix.shape[0] - 1)
    highest = np.argpartition(-document_topic_matrix[:, topic_id], kth)[
        :kth
    ]
    highest = highest[
        np.argsort(-document_topic_matrix[highest, topic_id])
    ]
    scores = document_topic_matrix[highest, topic_id]
    columns = [["Document", "Score"]]
    rows = []
    for document_id, score in zip(highest, scores):
        doc = raw_documents[document_id]
        rows.append([doc, score])
    if show_negative:
        lowest = np.argpartition(document_topic_matrix[:, topic_id], kth)[
            :kth
        ]
        lowest = lowest[
            np.argsort(document_topic_matrix[lowest, topic_id])
        ]
        lowest = lowest[::-1]
        scores = document_topic_matrix[lowest, topic_id]
        for document_id, score in zip(lowest, scores):
            doc = raw_documents[document_id]
            rows.append([doc, score])
    return pd.DataFrame(rows, columns=columns)

topic_distribution_df(text=None, topic_dist=None, top_k=10)

Extracts topic distribution into a dataframe.

Parameters:

Name Type Description Default
text

Text to infer topic distribution for.

None
topic_dist

Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text.

None
top_k int

Top K topics to show.

10
Source code in turftopic/container.py
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
def topic_distribution_df(
    self, text=None, topic_dist=None, top_k: int = 10
):
    """Extracts topic distribution into a dataframe.

    Parameters
    ----------
    text: str, optional
        Text to infer topic distribution for.
    topic_dist: ndarray of shape (n_topics), optional
        Already inferred topic distribution for the text.
        This is useful for transductive methods,
        as they cannot infer topics from text.
    top_k: int, default 10
        Top K topics to show.
    """
    try:
        import pandas as pd
    except ModuleNotFoundError:
        raise ModuleNotFoundError(
            "You need to pip install pandas to be able to use dataframes."
        )
    if topic_dist is None:
        if text is None:
            raise ValueError(
                "You should either pass a text or a distribution."
            )
        try:
            topic_dist = self.transform([text])
        except AttributeError:
            raise ValueError(
                "Transductive methods cannot "
                "infer topical content in documents.\n"
                "Please pass a topic distribution."
            )
    topic_dist = np.squeeze(np.asarray(topic_dist))
    highest = np.argsort(-topic_dist)[:top_k]
    columns = []
    columns.append("Topic name")
    columns.append("Score")
    rows = []
    for ind in highest:
        score = topic_dist[ind]
        rows.append([self.topic_names[ind], score])
    return pd.DataFrame(rows, columns=columns)

topics_df(top_k=10, show_scores=False, show_negative=None)

Extracts topics into a pandas dataframe.

Parameters:

Name Type Description Default
top_k int

Number of top words to return for each topic.

10
show_scores bool

Indicates whether to show importance scores for each word.

False
show_negative Optional[bool]

Indicates whether the most negative terms should also be displayed.

None
Source code in turftopic/container.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def topics_df(
    self,
    top_k: int = 10,
    show_scores: bool = False,
    show_negative: Optional[bool] = None,
):
    """Extracts topics into a pandas dataframe.

    Parameters
    ----------
    top_k: int, default 10
        Number of top words to return for each topic.
    show_scores: bool, default False
        Indicates whether to show importance scores for each word.
    show_negative: bool, default False
        Indicates whether the most negative terms should also be displayed.
    """
    try:
        import pandas as pd
    except ModuleNotFoundError:
        raise ModuleNotFoundError(
            "You need to pip install pandas to be able to use dataframes."
        )
    columns, *rows = self._topics_table(top_k, show_scores, show_negative)
    return pd.DataFrame(rows, columns=columns)