Interpreting and Visualizing Models
Interpreting topic models can be challenging. Luckily Turftopic comes loaded with a bunch of utilities you can use for interpreting your topic models.
from turftopic import KeyNMF
model = KeyNMF(10)
topic_data = model.prepare_topic_data(corpus)
Topic Tables
The easiest way you can investigate topics in your fitted model is to use the built-in pretty printing utilities, that you can call on every fitted model or TopicData
object.
Interpret your models with topic tables
model.print_topics()
# or
topic_data.print_topics()
Topic ID | Top 10 Words |
---|---|
0 | armenians, armenian, armenia, turks, turkish, genocide, azerbaijan, soviet, turkey, azerbaijani |
1 | sale, price, shipping, offer, sell, prices, interested, 00, games, selling |
2 | christians, christian, bible, christianity, church, god, scripture, faith, jesus, sin |
3 | encryption, chip, clipper, nsa, security, secure, privacy, encrypted, crypto, cryptography |
.... |
# Print highest ranking documents for topic 0
model.print_representative_documents(0, corpus, document_topic_matrix)
# since topic_data already stores the corpus and the doc-topic-matrix, you only need to give a topic ID
topic_data.print_representative_documents(0)
Document | Score |
---|---|
Poor 'Poly'. I see you're preparing the groundwork for yet another retreat from your... | 0.40 |
Then you must be living in an alternate universe. Where were they? An Appeal to Mankind During the... | 0.40 |
It is 'Serdar', 'kocaoglan'. Just love it. Well, it could be your head wasn't screwed on just right... | 0.39 |
document = "I think guns should definitely banned from all public institutions, such as schools."
model.print_topic_distribution(document)
# or
topic_data.print_topic_distribution(document)
Topic name | Score |
---|---|
7_gun_guns_firearms_weapons | 0.05 |
17_mail_address_email_send | 0.00 |
3_encryption_chip_clipper_nsa | 0.00 |
19_baseball_pitching_pitcher_hitter | 0.00 |
11_graphics_software_program_3d | 0.00 |
You can also export tables as pandas DataFrames by removing the print_
prefix, and postfixing the method with _df
or export tables in a given format, by using the export_<something>
method instead of print_<something>
.
model.topics_df()
model.topic_distribution_df("something something")
topic_data.representative_documents_df(5)
model.export_topics(format="markdown")
model.export_topic_distribution("something something", format="markdown")
topic_data.export_representative_documents(5, format="markdown")
model.export_topics(format="latex")
model.export_topic_distribution("something something", format="latex")
topic_data.export_representative_documents(5, format="latex")
model.export_topics(format="csv")
model.export_topic_distribution("something something", format="csv")
topic_data.export_representative_documents(5, format="csv")
Visualization with topicwizard
Turftopic comes with a number of model-specific visualization utilities, which you can check out on the models page. We do provide a general overview here, as well as instructions on how to use topicwizard with Turftopic for interactive topic interpretation.
To use topicwizard you will first have to install it:
pip install topic-wizard
Web App
The easiest way to investigate any topic model interactively is to use the topicwizard web app.
You can launch the app either using a TopicData
or a model object and a representative sample of documents.
topic_data.visualize_topicwizard()
import topicwizard
topicwizard.visualize(corpus=documents, model=model)
Figures
You can also produce individual interactive figures using the Figures API in topicwizard.
Almost all figures in the Figures API can be called on the figures
submodule of any TopicData
object.
Interpret your models using interactive figures
topic_data.figures.topic_map()
topic_data.figures.topic_barcharts()
topic_data.figures.word_map()
topic_data.figures.topic_wordclouds()
topic_data.figures.document_map()
Datamapplot (Clustering models)
You can interactively explore clusters using datamapplot directly in Turftopic!
You will first have to install datamapplot
for this to work:
pip install turftopic[datamapplot]
from turftopic import ClusteringTopicModel
from turftopic.namers import OpenAITopicNamer
model = ClusteringTopicModel(feature_importance="centroid").fit(corpus)
namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)
fig = model.plot_clusters_datamapplot()
fig.save("clusters_visualization.html")
fig
Info
If you are not running Turftopic from a Jupyter notebook, make sure to call fig.show()
. This will open up a new browser tab with the interactive figure.
Naming Topics
Topics in Turftopic by default are named based on the highest ranking keywords for a given topic. You might however want to get more fitting names for your topics either automatically or assigning them manually. See a our detailed guide about Namers to learn how you can use LLMs to assign names to topics.
Examples
from turftopic import KeyNMF
from turftopic.namers import OpenAITopicNamer
namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)
model.print_topics()
Topic ID | Topic Name | Highest Ranking |
---|---|---|
0 | Operating Systems and Software | windows, dos, os, ms, microsoft, unix, nt, memory, program, apps |
1 | Atheism and Belief Systems | atheism, atheist, atheists, belief, religion, religious, theists, beliefs, believe, faith |
2 | Computer Architecture and Performance | motherboard, ram, memory, cpu, bios, isa, speed, 486, bus, performance |
... |
from turftopic import SemanticSignalSeparation
model = SemanticSignalSeparation(10).fit(corpus)
model.rename_topics({0: "New name for topic 0", 5: "New name for topic 5"})
API Reference
turftopic.container.TopicContainer
Bases: ABC
Base class for classes that contain topical information.
Source code in turftopic/container.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
topic_names
property
Names of the topics based on the highest scoring 4 terms.
export_representative_documents(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None, format='csv')
Exports the highest ranking documents in a topic as a text table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_id
|
ID of the topic to display. |
required | |
raw_documents
|
List of documents to consider. |
None
|
|
document_topic_matrix
|
Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
Top K documents to show. |
5
|
|
show_negative
|
Optional[bool]
|
Indicates whether lowest ranking documents should also be shown. |
None
|
format
|
str
|
Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported. |
'csv'
|
Source code in turftopic/container.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
|
export_topic_distribution(text=None, topic_dist=None, top_k=10, format='csv')
Exports topic distribution as a text table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
Text to infer topic distribution for. |
None
|
|
topic_dist
|
Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
int
|
Top K topics to show. |
10
|
format
|
Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported. |
'csv'
|
Source code in turftopic/container.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
|
export_topics(top_k=10, show_scores=False, show_negative=None, format='csv')
Exports top K words from topics in a table in a given format. Returns table as a pure string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
10
|
show_scores
|
bool
|
Indicates whether to show importance scores for each word. |
False
|
show_negative
|
Optional[bool]
|
Indicates whether the most negative terms should also be displayed. |
None
|
format
|
str
|
Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported. |
'csv'
|
Source code in turftopic/container.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
export_topics_over_time(top_k=5, show_scores=False, date_format='%Y %m %d', format='csv')
Pretty prints topics in the model in a table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
5
|
show_scores
|
bool
|
Indicates whether to show importance scores for each word. |
False
|
format
|
Specifies which format should be used. 'csv', 'latex' and 'markdown' are supported. |
'csv'
|
Source code in turftopic/container.py
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
|
get_time_slices()
Returns starting and ending datetime of each timeslice in the model.
Source code in turftopic/container.py
628 629 630 631 632 633 634 635 636 637 638 639 |
|
get_topics(top_k=10)
Returns high-level topic representations in form of the top K words in each topic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
10
|
Returns:
Type | Description |
---|---|
list[tuple]
|
List of topics. Each topic is a tuple of topic ID and the top k words. Top k words are a list of (word, word_importance) pairs. |
Source code in turftopic/container.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
get_topics_over_time(top_k=10)
Returns high-level topic representations in form of the top K words in each topic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
10
|
Returns:
Type | Description |
---|---|
list[list[tuple]]
|
List of topics over each time slice in the dynamic model. Each time slice is a list of topics. Each topic is a tuple of topic ID and the top k words. Top k words are a list of (word, word_importance) pairs. |
Source code in turftopic/container.py
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
plot_topics_over_time(top_k=6, color_discrete_sequence=None, color_discrete_map=None)
Displays topics over time in the fitted dynamic model on a dynamic HTML figure.
You will need to
pip install plotly
to use this method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words per topic to display on the figure. |
6
|
color_discrete_sequence
|
Optional[Iterable[str]]
|
Color palette to use in the plot. Example:
|
None
|
color_discrete_map
|
Optional[dict[str, str]]
|
Topic names mapped to the colors that should be associated with them. |
None
|
Returns:
Type | Description |
---|---|
Figure
|
Plotly graph objects Figure, that can be displayed or exported as HTML or static image. |
Source code in turftopic/container.py
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
|
print_representative_documents(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None)
Pretty prints the highest ranking documents in a topic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_id
|
ID of the topic to display. |
required | |
raw_documents
|
List of documents to consider. |
None
|
|
document_topic_matrix
|
Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
Top K documents to show. |
5
|
|
show_negative
|
Optional[bool]
|
Indicates whether lowest ranking documents should also be shown. |
None
|
Source code in turftopic/container.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
print_topic_distribution(text=None, topic_dist=None, top_k=10)
Pretty prints topic distribution in a document.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
Text to infer topic distribution for. |
None
|
|
topic_dist
|
Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
int
|
Top K topics to show. |
10
|
Source code in turftopic/container.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
print_topics(top_k=10, show_scores=False, show_negative=None)
Pretty prints topics in the model in a table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
10
|
show_scores
|
bool
|
Indicates whether to show importance scores for each word. |
False
|
show_negative
|
Optional[bool]
|
Indicates whether the most negative terms should also be displayed. |
None
|
Source code in turftopic/container.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
print_topics_over_time(top_k=5, show_scores=False, date_format='%Y %m %d')
Pretty prints topics in the model in a table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
5
|
show_scores
|
bool
|
Indicates whether to show importance scores for each word. |
False
|
Source code in turftopic/container.py
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
|
rename_topics(names)
Rename topics in a model manually or automatically, using a namer.
Examples:
model.rename_topics(["Automobiles", "Telephones"])
# Or:
model.rename_topics({-1: "Outliers", 2: "Christianity"})
# Or:
namer = OpenAITopicNamer()
model.rename_topics(namer)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
Union[list[str], dict[int, str], TopicNamer]
|
Should be a list of topic names, or a mapping of topic IDs to names. |
required |
Source code in turftopic/container.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
representative_documents_df(topic_id, raw_documents=None, document_topic_matrix=None, top_k=5, show_negative=None)
Collects highest ranking documents in a topic to a dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_id
|
ID of the topic to display. |
required | |
raw_documents
|
List of documents to consider. |
None
|
|
document_topic_matrix
|
Document topic matrix to use. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
Top K documents to show. |
5
|
|
show_negative
|
Optional[bool]
|
Indicates whether lowest ranking documents should also be shown. |
None
|
Source code in turftopic/container.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
|
topic_distribution_df(text=None, topic_dist=None, top_k=10)
Extracts topic distribution into a dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
Text to infer topic distribution for. |
None
|
|
topic_dist
|
Already inferred topic distribution for the text. This is useful for transductive methods, as they cannot infer topics from text. |
None
|
|
top_k
|
int
|
Top K topics to show. |
10
|
Source code in turftopic/container.py
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
topics_df(top_k=10, show_scores=False, show_negative=None)
Extracts topics into a pandas dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Number of top words to return for each topic. |
10
|
show_scores
|
bool
|
Indicates whether to show importance scores for each word. |
False
|
show_negative
|
Optional[bool]
|
Indicates whether the most negative terms should also be displayed. |
None
|
Source code in turftopic/container.py
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
|