Clustering Topic Models
Clustering topic models conceptualize topic modeling as a clustering task. Essentially a topic for these models is a tightly packed group of documents in semantic space.
The first contextually sensitive clustering topic model was introduced with Top2Vec, and BERTopic has also iterated on this idea.
Turftopic contains flexible implementations of these models where you have control over each of the steps in the process, while sticking to a minimal amount of extra dependencies. While the models themselves can be equivalent to BERTopic and Top2Vec implementations, Turftopic might not offer some of the implementation-specific features, that the other libraries boast.
How do clustering models work?
Dimensionality Reduction
from sklearn.manifold import TSNE
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel(dimensionality_reduction=TSNE())
It is common practice to reduce the dimensionality of the embeddings before clustering them. This is to avoid the curse of dimensionality, an issue, which many clustering models are affected by. Dimensionality reduction by default is done with TSNE in Turftopic, but users are free to specify the model that will be used for dimensionality reduction.
Use openTSNE for better performance!
By default, a scikit-learn implementation is used, but if you have the openTSNE package installed on your system, Turftopic will automatically use it. You can potentially speed up your clustering topic models by multiple orders of magnitude.
pip install turftopic[opentsne]
What reduction model should I choose?
Our knowledge about the impacts of choice of dimensionality reduction is limited, and has not yet been explored in the literature. Top2Vec and BERTopic both use UMAP, which has a number of desirable properties over alternatives (arranging data points into cluster-like structures, better preservation of global structure than TSNE, speed).
Clustering
from sklearn.cluster import HDBSCAN
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel(clustering=HDBSCAN())
After reducing the dimensionality of the embeddings, they are clustered with a clustering model. Turftopic uses HDBSCAN as its default.
What clustering model should I choose?
Some clustering models are capable of discovering the number of clusters in the data (HDBSCAN, DBSCAN, OPTICS, etc.). Practice suggests, however, that in large corpora, this frequently results in a very large number of topics, which is impractical for interpretation. Models' hyperparameters can be adjusted to account for this behaviour, but the impact of choice of hyperparameters on topic quality is more or less unknown. You can also use models that have predefined numbers of clusters, these, however, typically produce lower topic quality (e.g. KMeans)
Term importance
Clustering topic models rely on post-hoc term importance estimation. Multiple methods can be used for this in Turftopic.
Weaknesses
- Topics can be too specific => low within-topic coverage
- Assumes spherical clusters => could give incorrect results
Strengths
- Clean topics
- Highly specific topics
Proximity to Cluster Centroids
The solution introduced in Top2Vec (Angelov, 2020) is that of estimating terms' importances for a given topic from their embeddings' cosine similarity to the centroid of the embeddings in a cluster.
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel(feature_importance="centroid")
Weaknesses
- Topics can be contaminated with stop words
- Lower topic quality
Strengths
- Theoretically correct
- More within-topic coverage
c-TF-IDF
c-TF-IDF (Grootendorst, 2022) is a weighting scheme based on the number of occurrences of terms in each cluster. Terms which frequently occur in other clusters are inversely weighted so that words, which are specific to a topic gain larger importance.
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel(feature_importance="soft-c-tf-idf")
# or
model = ClusteringTopicModel(feature_importance="c-tf-idf")
By default, Turftopic uses a modified version of c-TF-IDF, called Soft-c-TF-IDF.
Click to see formula
- Let \(X\) be the document term matrix where each element (\(X_{ij}\)) corresponds with the number of times word \(j\) occurs in a document \(i\).
- Estimate weight of term \(j\) for topic \(z\):
\(tf_{zj} = \frac{t_{zj}}{w_z}\), where \(t_{zj} = \sum_{i \in z} X_{ij}\) is the number of occurrences of a word in a topic and \(w_{z}= \sum_{j} t_{zj}\) is all words in the topic - Estimate inverse document/topic frequency for term \(j\):
\(idf_j = log(\frac{N}{\sum_z |t_{zj}|})\), where \(N\) is the total number of documents. - Calculate importance of term \(j\) for topic \(z\):
\(Soft-c-TF-IDF{zj} = tf_{zj} \cdot idf_j\)
You can also use the original c-TF-IDF formula, if you intend to replicate the behaviour of BERTopic exactly. The two formulas tend to give similar results, though the implications of choosing one over the other has not been thoroughly evaluated.
Click to see formula
- Let \(X\) be the document term matrix where each element (\(X_{ij}\)) corresponds with the number of times word \(j\) occurs in a document \(i\).
- \(tf_{zj} = \frac{t_{zj}}{w_z}\), where
\(t_{zj} = \sum_{i \in z} X_{ij}\) is the number of occurrences of a word in a topic and
\(w_{z}= \sum_{j} t_{zj}\) is all words in the topic
- Estimate inverse document/topic frequency for term \(j\):
\(idf_j = log(1 + \frac{A}{\sum_z |t_{zj}|})\), where \(A = \frac{\sum_z \sum_j t_{zj}}{Z}\) is the average number of words per topic, and \(Z\) is the number of topics. - Calculate importance of term \(j\) for topic \(z\):
\(c-TF-IDF{zj} = tf_{zj} \cdot idf_j\)
Recalculating Term Importance
You can also choose to recalculate term importances with a different method after fitting the model:
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel().fit(corpus)
model.estimate_components(feature_importance="centroid")
model.estimate_components(feature_importance="soft-c-tf-idf")
Hierarchical Topic Merging
A weakness of clustering approaches based on density-based clustering methods, is that all too frequently they find a very large number of topics. To limit the number of topics in a topic model you can use hierarchical topic merging.
Merge Smallest
The approach used in the Top2Vec package is to always merge the smallest topic into the one closest to it (except the outlier-cluster) until the number of topics is down to the desired amount.
You can achieve this behaviour like so:
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel(n_reduce_to=10, reduction_method="smallest")
Agglomerative Clustering
In BERTopic topics are merged based on agglomerative clustering using average linkage, and then term importances are reestimated. You can do this in Turftopic as well:
model = ClusteringTopicModel(n_reduce_to=10, reduction_method="agglomerative")
You can also merge topics after having run the models using the reduce_topics()
method.
model = ClusteringTopicModel().fit(corpus)
model.reduce_topics(n_reduce_to=20, reduction_method="smallest")
To reset topics to the original clustering, use the reset_topics()
method:
model.reset_topics()
Visualization
You can interactively explore clusters using datamapplot directly in Turftopic!
You will first have to install datamapplot
for this to work:
pip install turftopic[datamapplot]
from turftopic import ClusteringTopicModel
from turftopic.namers import OpenAITopicNamer
model = ClusteringTopicModel(feature_importance="centroid").fit(corpus)
namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)
fig = model.plot_clusters_datamapplot()
fig.save("clusters_visualization.html")
fig
Info
If you are not running Turftopic from a Jupyter notebook, make sure to call fig.show()
. This will open up a new browser tab with the interactive figure.
Manual Topic Merging
You can also manually merge topics using the join_topics()
method.
model = ClusteringTopicModel()
model.fit(texts, embeddings=embeddings)
# This joins topics 0, 1, 2 to be cluster 0
model.join_topics([0, 1, 2])
How do I use BERTopic and Top2Vec in Turftopic?
You can create BERTopic and Top2Vec models in Turftopic by modifying all model parameters and hyperparameters to match the defaults in those other packages.
You will need UMAP and scikit-learn>=1.3.0 to be able to use HDBSCAN and UMAP:
pip install umap-learn scikit-learn>=1.3.0
BERTopic
You will need to set the clustering model to HDBSCAN and dimensionality reduction to UMAP. BERTopic also uses the original c-tf-idf formula and agglomerative topic joining.
Show code
from turftopic import ClusteringTopicModel
from sklearn.cluster import HDBSCAN
import umap
berttopic = ClusteringTopicModel(
dimensionality_reduction=umap.UMAP(
n_neighbors=10,
n_components=5,
min_dist=0.0,
metric="cosine",
),
clustering=HDBSCAN(
min_cluster_size=15,
metric="euclidean",
cluster_selection_method="eom",
),
feature_importance="c-tf-idf",
reduction_method="agglomerative"
)
Top2Vec
You will need to set the clustering model to HDBSCAN and dimensionality reduction to UMAP.
Top2Vec uses centroid
feature importance and smallest
topic merging method.
Show code
top2vec = ClusteringTopicModel(
dimensionality_reduction=umap.UMAP(
n_neighbors=15,
n_components=5,
metric="cosine"
),
clustering=HDBSCAN(
min_cluster_size=15,
metric="euclidean",
cluster_selection_method="eom",
),
feature_importance="centroid",
reduction_method="smallest"
)
Theoretically the model descriptions above should result in the same behaviour as the other two packages, but there might be minor changes in implementation. We do not intend to keep up with changes in Top2Vec's and BERTopic's internal implementation details indefinitely.
Dynamic Modeling
Clustering models are also capable of dynamic topic modeling. This happens by fitting a clustering model over the entire corpus, as we expect that there is only one semantic model generating the documents.
from turftopic import ClusteringTopicModel
model = ClusteringTopicModel().fit_dynamic(corpus, timestamps=ts, bins=10)
model.print_topics_over_time()
API Reference
turftopic.models.cluster.ClusteringTopicModel
Bases: ContextualModel
, ClusterMixin
, DynamicTopicModel
Topic models, which assume topics to be clusters of documents in semantic space. Models also include a dimensionality reduction step to aid clustering.
from turftopic import ClusteringTopicModel
from sklearn.cluster import HDBSCAN
import umap
corpus: list[str] = ["some text", "more text", ...]
# Construct a Top2Vec-like model
model = ClusteringTopicModel(
dimensionality_reduction=umap.UMAP(5),
clustering=HDBSCAN(),
feature_importance="centroid"
).fit(corpus)
model.print_topics()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
encoder
|
Union[Encoder, str]
|
Model to encode documents/terms, all-MiniLM-L6-v2 is the default. |
'sentence-transformers/all-MiniLM-L6-v2'
|
vectorizer
|
Optional[CountVectorizer]
|
Vectorizer used for term extraction. Can be used to prune or filter the vocabulary. |
None
|
dimensionality_reduction
|
Optional[TransformerMixin]
|
Dimensionality reduction step to run before clustering. Defaults to TSNE with cosine distance. To imitate the behavior of BERTopic or Top2Vec you should use UMAP. |
None
|
clustering
|
Optional[ClusterMixin]
|
Clustering method to use for finding topics. Defaults to OPTICS with 25 minimum cluster size. To imitate the behavior of BERTopic or Top2Vec you should use HDBSCAN. |
None
|
feature_importance
|
Literal['c-tf-idf', 'soft-c-tf-idf', 'centroid', 'bayes']
|
Method for estimating term importances. 'centroid' uses distances from cluster centroid similarly to Top2Vec. 'c-tf-idf' uses BERTopic's c-tf-idf. 'soft-c-tf-idf' uses Soft c-TF-IDF from GMM, the results should be very similar to 'c-tf-idf'. 'bayes' uses Bayes' rule. |
'soft-c-tf-idf'
|
n_reduce_to
|
Optional[int]
|
Number of topics to reduce topics to. The specified reduction method will be used to merge them. By default, topics are not merged. |
None
|
reduction_method
|
Literal['agglomerative', 'smallest']
|
Method used to reduce the number of topics post-hoc. When 'agglomerative', BERTopic's topic reduction method is used, where topic vectors are hierarchically clustered. When 'smallest', the smallest topic gets merged into the closest non-outlier cluster until the desired number is achieved similarly to Top2Vec. |
'agglomerative'
|
random_state
|
Optional[int]
|
Random state to use so that results are exactly reproducible. |
None
|
Source code in turftopic/models/cluster.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
|
estimate_components(feature_importance)
Estimates feature importances based on a fitted clustering.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_importance
|
Literal['centroid', 'soft-c-tf-idf', 'bayes', 'c-tf-idf']
|
Method for estimating term importances. 'centroid' uses distances from cluster centroid similarly to Top2Vec. 'c-tf-idf' uses BERTopic's c-tf-idf. 'soft-c-tf-idf' uses Soft c-TF-IDF from GMM, the results should be very similar to 'c-tf-idf'. 'bayes' uses Bayes' rule. |
required |
Returns:
Type | Description |
---|---|
ndarray of shape (n_components, n_vocab)
|
Topic-term matrix. |
Source code in turftopic/models/cluster.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
estimate_temporal_components(time_labels, time_bin_edges, feature_importance)
Estimates temporal components based on a fitted topic model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature_importance
|
Literal['c-tf-idf', 'soft-c-tf-idf', 'centroid', 'bayes']
|
Method for estimating term importances. 'centroid' uses distances from cluster centroid similarly to Top2Vec. 'c-tf-idf' uses BERTopic's c-tf-idf. 'soft-c-tf-idf' uses Soft c-TF-IDF from GMM, the results should be very similar to 'c-tf-idf'. 'bayes' uses Bayes' rule. |
required |
Returns:
Type | Description |
---|---|
ndarray of shape (n_time_bins, n_components, n_vocab)
|
Temporal topic-term matrix. |
Source code in turftopic/models/cluster.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
fit_predict(raw_documents, y=None, embeddings=None)
Fits model and predicts cluster labels for all given documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raw_documents
|
Documents to fit the model on. |
required | |
y
|
Ignored, exists for sklearn compatibility. |
None
|
|
embeddings
|
Optional[ndarray]
|
Precomputed document encodings. |
None
|
Returns:
Type | Description |
---|---|
ndarray of shape (n_documents)
|
Cluster label for all documents (-1 for outliers) |
Source code in turftopic/models/cluster.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|
join_topics(topic_ids)
Joins given topic together into one topic and reestimates term importances.
Example:
model.join_topics([0,3,2])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_ids
|
list[int]
|
Topic IDs to join together. The new topic will get the lowest ID. |
required |
Source code in turftopic/models/cluster.py
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
reduce_topics(n_reduce_to, reduction_method)
Reduces the clustering to the desired amount with the given method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_reduce_to
|
int
|
Number of topics to reduce topics to. The specified reduction method will be used to merge them. By default, topics are not merged. |
required |
reduction_method
|
Literal['smallest', 'agglomerative']
|
Method used to reduce the number of topics post-hoc. When 'agglomerative', BERTopic's topic reduction method is used, where topic vectors are hierarchically clustered. When 'smallest', the smallest topic gets merged into the closest non-outlier cluster until the desired number is achieved similarly to Top2Vec. |
required |
Returns:
Type | Description |
---|---|
ndarray of shape (n_documents)
|
New cluster labels for documents. |
Source code in turftopic/models/cluster.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
|
reset_topics()
Resets topic reductions to the original clustering.
Source code in turftopic/models/cluster.py
355 356 357 358 359 360 361 362 |
|