StudentsTMixture
noloox.mixture.StudentsTMixture
Bases: BaseEstimator, ClusterMixin, DensityMixin
Student's T Mixture Model. This class allows you to estimate a mixture of multivariate t-distributions over your data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_components |
int
|
The number of mixture components. |
required |
tol |
float
|
The convergence threshold. EM iterations will stop when the lower bound average gain is below this threshold. |
1e-05
|
reg_covar |
float
|
Non-negative regularization added to the diagonal of covariance. Allows to assure that the covariance matrices are all positive. |
1e-06
|
max_iter |
int
|
The number of EM iterations to perform. |
1000
|
df |
Degrees of freedom for the t-Distributions. |
4.0
|
|
random_state |
Random state for reproducibility. |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
weights_ |
array-like of shape (n_components,)
|
The weights of each mixture components. |
means_ |
array-like of shape (n_components, n_features)
|
The mean of each mixture component. |
n_iter_ |
int
|
Number of step used by the best fit of EM to reach the convergence. |
converged_ |
bool
|
True when convergence of the best fit of EM was reached, False otherwise. |
Source code in noloox/mixture/tmm.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | |
aic(X)
Akaike information criterion for the current model on the input X.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
The input samples. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
aic |
float
|
The lower the better. |
Source code in noloox/mixture/tmm.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | |
bic(X)
Bayesian information criterion for the current model on the input X.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
The input samples. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
bic |
float
|
The lower the better. |
Source code in noloox/mixture/tmm.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | |
fit(X, y=None)
Estimate model parameters with the EM algorithm.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required | |
y |
Not used, present for API consistency by convention. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
self |
StudentsTMixture
|
The fitted mixture. |
Source code in noloox/mixture/tmm.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | |
fit_predict(X)
Estimate model parameters using X and predict the labels for X.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
array-like of shape (n_samples, n_features)
|
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required |
y |
Ignored
|
Not used, present for API consistency by convention. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
labels |
(array, shape(n_samples))
|
Component labels. |
Source code in noloox/mixture/tmm.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | |
predict(X)
Predict the labels for the data samples in X using trained model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
array-like of shape (n_samples, n_features)
|
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
labels |
(array, shape(n_samples))
|
Component labels. |
Source code in noloox/mixture/tmm.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |
predict_proba(X)
Evaluate the components' density for each sample.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
array-like of shape (n_samples, n_features)
|
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
resp |
(array, shape(n_samples, n_components))
|
Density of each Student's T component for each sample in X. |
Source code in noloox/mixture/tmm.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | |
score(X, y=None)
Compute the per-sample average log-likelihood of the given data X.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
array-like of shape (n_samples, n_dimensions)
|
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required |
y |
Ignored
|
Not used, present for API consistency by convention. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
log_likelihood |
float
|
Log-likelihood of |
Source code in noloox/mixture/tmm.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | |
score_samples(X)
Compute the log-likelihood of each sample.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
array-like of shape (n_samples, n_features)
|
List of n_features-dimensional data points. Each row corresponds to a single data point. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
log_prob |
(array, shape(n_samples))
|
Log-likelihood of each sample in |
Source code in noloox/mixture/tmm.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |