SNMF
noloox.decomposition.SNMF
Bases: TransformerMixin, BaseEstimator
Semi-Nonnegative Matrix Factorization. Equivalent to NMF, except the components, and therefore the outcome variables are unbounded. The latent factors are constrained to be nonnegative.
Example:
import numpy as np
from noloox.decomposition import SNMF
X = np.random.normal(0, 1, size=(200, 50))
model = SNMF(n_components=10)
X_transformed = model.fit_transform(X)
assert np.all(X_transformed >= 0)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_components |
int
|
Number of latent components to discover. |
required |
tol |
float
|
Tolerance for stopping condition. |
1e-05
|
max_iter |
int
|
Maximum number of iterations. |
200
|
progress_bar |
bool
|
Indicates whether to display a progress bar when fitting. |
True
|
random_state |
Optional[int]
|
Used for model intialization with KMeans. |
None
|
sparsity |
float
|
L1 penalty. Higher values result in a stricter clustering. |
0.0
|
Attributes:
| Name | Type | Description |
|---|---|---|
components_ |
ndarray of shape (n_components, n_features)
|
Factorization matrix, sometimes called ‘dictionary’. Unconstrained. |
n_iter_ |
int
|
Acutal number of iterations. |
reconstruction_err_ |
float
|
Reconstruction error of the model at the last iteration. |
Source code in noloox/decomposition/snmf.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | |
fit(X, y=None)
Learn an SNMF model for the data X.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
Datapoints to factor. |
required | |
y |
Not used, present for API consistency by convention. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
self |
SNMF
|
Fitted model. |
Source code in noloox/decomposition/snmf.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | |
fit_transform(X, y=None)
Learn an SNMF model for the data X and returns the transformed data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
Datapoints to factor. |
required | |
y |
Not used, present for API consistency by convention. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
W |
ndarray of shape (n_samples, n_components)
|
Transformed data. Strictily nonnegative. |
Source code in noloox/decomposition/snmf.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | |
inverse_transform(X)
Transform data back to its original space.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
ndarray of shape (n_samples, n_components)
|
Transformed data matrix. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
X_original |
ndarray of shape (n_samples, n_features)
|
Returns a data matrix of the original shape. |
Source code in noloox/decomposition/snmf.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 | |
transform(X)
Transform the data X according to the fitted SNMF model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X |
Datapoints to transform. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
W |
ndarray of shape (n_samples, n_components)
|
Nonnegative latent sources. |
Source code in noloox/decomposition/snmf.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |